Learning an optimization algorithm through human design iterations

Thurston Sexton, Max Yi Ren

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Solving optimal design problems through crowdsourcing faces a dilemma: On the one hand, human beings have been shown to be more effective than algorithms at searching for good solutions of certain real-world problems with high-dimensional or discrete solution spaces; on the other hand, the cost of setting up crowdsourcing environments, the uncertainty in the crowd's domain-specific competence, and the lack of commitment of the crowd contribute to the lack of real-world application of design crowdsourcing. We are thus motivated to investigate a solution-searching mechanism where an optimization algorithm is tuned based on human demonstrations on solution searching, so that the search can be continued after human participants abandon the problem. To do so, we model the iterative search process as a Bayesian optimization (BO) algorithm and propose an inverse BO (IBO) algorithm to find the maximum likelihood estimators (MLEs) of the BO parameters based on human solutions. We show through a vehicle design and control problem that the search performance of BO can be improved by recovering its parameters based on an effective human search. Thus, IBO has the potential to improve the success rate of design crowdsourcing activities, by requiring only good search strategies instead of good solutions from the crowd.

Original languageEnglish (US)
Article number101404
JournalJournal of Mechanical Design - Transactions of the ASME
Volume139
Issue number10
DOIs
StatePublished - Oct 1 2017

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Learning an optimization algorithm through human design iterations'. Together they form a unique fingerprint.

Cite this