Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskites

George H. Wolf, Raymond Jeanloz

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


The phonon spectra, distortion mechanisms, and thermoelastic properties of CaSiO3and MgSiO3 in the cubic perovskite structure are investigated as a function of pressure using a lattice dynamic approach. The bonding forces are derived from a parameter‐free rigid‐ion electron‐gas formulation. At low pressures, CaSiO3 is found to be dynamically stable in the cubic perovskite structure; however, the phonon spectrum exhibits soft modes at the Brillouin zone boundary which ultimately result in a dynamic instability of the lattice near 80 GPa. The computed phonon spectrum of cubic MgSiO3 perovskite exhibits complex frequencies along parts of the zone boundary at all densities investigated. These vibrational instabilities include coupled octahedral rotations which produce the observed distorted structure of MgSiO3 perovskite. The measured bulk modulus of MgSiO3 perovskite compares well with our calculated value for the cubic structure.

Original languageEnglish (US)
Pages (from-to)413-416
Number of pages4
JournalGeophysical Research Letters
Issue number7
StatePublished - Jul 1985
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskites'. Together they form a unique fingerprint.

Cite this