Investigation of GaN-on-GaN vertical p-n diode with regrown p-GaN by metalorganic chemical vapor deposition

Kai Fu, Houqiang Fu, Hanxiao Liu, Shanthan Reddy Alugubelli, Tsung Han Yang, Xuanqi Huang, Hong Chen, Izak Baranowski, Jossue Montes, Fernando Ponce, Yuji Zhao

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

To mimic selective-area doping, p-GaN was regrown on an etched GaN surface on GaN substrates by metalorganic chemical vapor deposition. Vertical GaN-on-GaN p-n diodes were fabricated to investigate the effects of the etch-then-regrowth process on device performance. The crystal quality of the sample after each epitaxial step was characterized by X-ray diffraction, where the etch-then-regrowth process led to a very slight increase in edge dislocations. A regrowth interfacial layer was clearly shown by transmission electron microscopy. Strong electroluminescence was observed with three emission peaks at 2.2 eV, 2.8 eV, and 3.0 eV. The forward current density increased slightly with increasing temperature, while the reverse current density was almost temperature independent indicating tunneling as the reverse transport mechanism. This result is very similar to the reported Zener tunnel diode comprising a high doping profile at the junction interface. High levels of silicon and oxygen concentrations were observed at the regrowth interface with a distribution width of ∼100 nm. This work provides valuable information on p-GaN regrowth and regrown GaN p-n diodes, which can serve as an important reference for developing selective doping for advanced GaN power electronics for high voltage and high power applications.

Original languageEnglish (US)
Article number233502
JournalApplied Physics Letters
Volume113
Issue number23
DOIs
StatePublished - Dec 3 2018

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Investigation of GaN-on-GaN vertical p-n diode with regrown p-GaN by metalorganic chemical vapor deposition'. Together they form a unique fingerprint.

Cite this