TY - JOUR
T1 - Investigation of GaAs surface treatments for ZnSe growth by molecular beam epitaxy without a buffer layer
AU - Zhang, Chaomin
AU - Alberi, Kirstin
AU - Honsberg, Christiana
AU - Park, Kwangwook
N1 - Funding Information:
The authors acknowledge funding from the U.S. Department of Energy under contract DE-EE0006335, the Engineering Research Center Program of the National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the Office of Science, Basic Energy Sciences. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The authors also would like to acknowledge support from National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1070471) and System Semiconductor Development Program funded by Gyeoggi-do.
Funding Information:
The authors acknowledge funding from the U.S. Department of Energy under contract DE-EE0006335, the Engineering Research Center Program of the National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the Office of Science, Basic Energy Sciences. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The authors also would like to acknowledge support from National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1F1A1070471) and System Semiconductor Development Program funded by Gyeoggi-do.
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/5/30
Y1 - 2021/5/30
N2 - Atomically clean and smooth surfaces are critical prerequisites for the epitaxial regrowth of dissimilar semiconductors. Using ZnSe/GaAs as a model system, epitaxial regrowth without a buffer layer after thermal cleaning with various As-fluxes, atomic Ga flux, and atomic hydrogen treatments to the GaAs substrates and the surfaces were investigated via in-situ Auger electron spectroscopy. The ZnSe epilayers grown on the pre-treated GaAs surfaces without a buffer layer were characterized by X-ray diffraction, photoluminescence and atomic force microscopy to evaluate the effectiveness of the surface treatment methods. It was found that a high quality ZnSe layer can be achieved by atomic hydrogen surface treatment at 300 °C without requiring GaAs buffer layer growth, which reveals a path for epitaxy growth avoiding high temperature treatments.
AB - Atomically clean and smooth surfaces are critical prerequisites for the epitaxial regrowth of dissimilar semiconductors. Using ZnSe/GaAs as a model system, epitaxial regrowth without a buffer layer after thermal cleaning with various As-fluxes, atomic Ga flux, and atomic hydrogen treatments to the GaAs substrates and the surfaces were investigated via in-situ Auger electron spectroscopy. The ZnSe epilayers grown on the pre-treated GaAs surfaces without a buffer layer were characterized by X-ray diffraction, photoluminescence and atomic force microscopy to evaluate the effectiveness of the surface treatment methods. It was found that a high quality ZnSe layer can be achieved by atomic hydrogen surface treatment at 300 °C without requiring GaAs buffer layer growth, which reveals a path for epitaxy growth avoiding high temperature treatments.
KW - Epitaxial regrowth
KW - II-VI semiconductors
KW - III-V semiconductors
KW - MBE
UR - http://www.scopus.com/inward/record.url?scp=85101423573&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101423573&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2021.149245
DO - 10.1016/j.apsusc.2021.149245
M3 - Article
AN - SCOPUS:85101423573
SN - 0169-4332
VL - 549
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 149245
ER -