Influence of shifting flow paths on nitrogen concentrations during monsoon floods, San Pedro River, Arizona

T. Meixner, A. K. Huth, Paul D. Brooks, M. H. Conklin, Nancy Grimm, R. C. Bales, P. A. Haas, J. R. Petti

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Hydrologic flow paths control transport, and therefore are a major constraint on the cycling and availability of nutrients within stream ecosystems. This control is particularly evident in semiarid streams, where hydrologic connectivity between stream, riparian, and upland systems increases greatly during storms in the rainy season, We measured chloride concentrations in base flow, precipitation, soil water, and stream water to quantify the hydrologic connectivity and solute flux between soil water, groundwater, and the stream channel during six summer floods in 2001 (a wet year; 25 cm winter rain) and 2002 (a dry year; 5 cm winter rain) in the San Pedro River, southeastern Arizona. This hydrologic information was used to evaluate observed patterns in nitrate, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations in floods. The first floods of each year showed increased stream nitrate concentration that was approximately two orders of magnitude higher than base flow concentration. DOC consistently doubled to tripled during storm events, while DON in 2001 showed no response and showed a marked increase in 2002. A chloride mixing model indicated that soil and groundwater contributions to storm water discharge were related to antecedent conditions and to flood magnitude. Soil and groundwater contributions were the highest early in the 2001 monsoon season following the wet winter, much lower early in 2002 following a dry winter, and lowest during the largest floods of the 2002 monsoon season when flows were derived primarily from precipitation and overland flow. Stream water nitrate-N concentrations during floods were consistently 0.2-0.5 mg/L higher in 2002 than during 2001, suggesting greater over-winter accumulation of soil nitrate during the drier year. This result is consistent with higher mean nitrate-N concentrations in soil water of the riparian zone in 2002 (3.1 mg/L) than in 2001 (0.56 mg/ L). These data highlight the importance of seasonal and interannual variability of hydrology in semiarid regions, and the role of water availability in driving patterns of soil nutrient accumulation and their transport to the stream.

Original languageEnglish (US)
Article numberG03S03
JournalJournal of Geophysical Research: Biogeosciences
Issue number3
StatePublished - Sep 28 2007

ASJC Scopus subject areas

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Palaeontology


Dive into the research topics of 'Influence of shifting flow paths on nitrogen concentrations during monsoon floods, San Pedro River, Arizona'. Together they form a unique fingerprint.

Cite this