Abstract
Information divergence functions allow us to measure distances between probability density functions. We focus on the case where we only have data from the two distributions and have no knowledge of the underlying models from which the data is sampled. In this scenario, we consider an f-divergence for which there exists an asymptotically consistent, nonparametric estimator based on minimum spanning trees, the Dp divergence. Nonparametric estimators are known to have slow convergence rates in higher dimensions (d > 4), resulting in a large bias for small datasets. Based on experimental validation, we conjecture that the original estimator follows a power law convergence model and introduce a new estimator based on a bootstrap sampling scheme that results in a reduced bias. Experiments on real and artificial data show that the new estimator results in improved estimates of the Dp divergence when compared against the original estimator.
Original language | English (US) |
---|---|
Title of host publication | Conference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 |
Editors | Michael B. Matthews |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 875-879 |
Number of pages | 5 |
Volume | 2017-October |
ISBN (Electronic) | 9781538618233 |
DOIs | |
State | Published - Apr 10 2018 |
Event | 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States Duration: Oct 29 2017 → Nov 1 2017 |
Other
Other | 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 |
---|---|
Country/Territory | United States |
City | Pacific Grove |
Period | 10/29/17 → 11/1/17 |
Keywords
- asymptotic estimator
- bootstrap estimator
- minimal graphs
- nonparametric f-Divergence
ASJC Scopus subject areas
- Control and Optimization
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing
- Biomedical Engineering
- Instrumentation