Abstract
It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore1,2. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing3-5, and it was recently experimentally shown that tunnelling can sense individual nucleotides6 and nucleosides 7. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.
Original language | English (US) |
---|---|
Pages (from-to) | 868-873 |
Number of pages | 6 |
Journal | Nature nanotechnology |
Volume | 5 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2010 |
ASJC Scopus subject areas
- Bioengineering
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics
- Electrical and Electronic Engineering