Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy

Sahil Inamdar, Karthik Pushpavanam, Jarrod M. Lentz, Martin Bues, Aman Anand, Kaushal Rege

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristic of protons, which results in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Currently available dosimeters are intrinsic, complex, and expensive and are not routinely used to determine the dose delivered to the tumor. Here, we report a hydrogel-based plasmonic nanosensor for detecting clinical doses used in conventional and hyperfractionated proton beam radiotherapy. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during proton treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime, and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.

Original languageEnglish (US)
Pages (from-to)3274-3281
Number of pages8
JournalACS Applied Materials and Interfaces
Issue number4
StatePublished - Jan 31 2018


  • gold nanoparticles
  • particle therapy
  • plasmonic
  • protons
  • radiation therapy

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy'. Together they form a unique fingerprint.

Cite this