High precision measurements of non-mass-dependent effects in nickel isotopes in meteoritic metal via multicollector ICPMS

David L. Cook, Meenakshi Wadhwa, Philip E. Janney, Nicolas Dauphas, Robert N. Clayton, Andrew M. Devis

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

We measured the Ni isotopic composition of metal from a variety of meteorite groups to search for variations in the 60Ni abundance from the decay of the short-lived nuclide 60Fe (t1/2 = 1.49 My) and for possible nucleosynthetic effects in the other stable isotopes of Ni. We developed a high-yield Ni separation procedure based on a combination of anion and cation exchange chromatography. Nickel isotopes were measured on a single-focusing, multicollector, inductively coupled mass spectrometer (MC-ICPMS). The external precision on the massbias-corrected 60Ni/58Ni ratio (±0.15 ε 2ω) is comparable to similar studies using double-focusing MC-ICPMS. We report the first high-precision data for 64Ni, the least abundant Ni isotope, obtained via MC-ICPMS. The external precision on the mass-bias-corrected 64Ni/58Ni ratio (±1.5 ε 2ω) is better than previous studies using thermal ionization mass spectrometry. No resolvable excesses relative to a terrestrial standard in the mass-bias-corrected 60Ni/58Ni ratio were detected in any meteoritic metal samples. However, resolvable deficits in this ratio were measured in the metal from several unequilibrated chondrites, implying a 60Fe/ 56Fe ratio of ∼1 × 10-6 at the time of Fe/Ni fractionation in chondritic metal. A 60Fe/56Fe ratio of (4.6 ± 3.3) ×107 is inferred at the time of Fe/ Ni fractionation on the parent bodies of magmatic iron meteorites and pallasites. No clearly resolvable non-mass-dependent anomalies were detected in the other stable isotopes of Ni in the samples investigated here, indicating that the Ni isotopic composition in the early solar system was homogeneous (at least at the level of precision reported here) at the time of meteoritic metal formation.

Original languageEnglish (US)
Pages (from-to)8477-8484
Number of pages8
JournalAnalytical chemistry
Volume78
Issue number24
DOIs
StatePublished - Dec 15 2006
Externally publishedYes

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'High precision measurements of non-mass-dependent effects in nickel isotopes in meteoritic metal via multicollector ICPMS'. Together they form a unique fingerprint.

Cite this