High order edge sensors with ℓ1 regularization for enhanced discontinuous Galerkin methods

Jan Glaubitz, Anne Gelb

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


This paper investigates the use of ℓ1 regularization for solving hyperbolic conservation laws based on high order discontinuous Galerkin (DG) approximations. We first use the polynomial annihilation method to construct a high order edge sensor which enables us to flag “troubled” elements. The DG approximation is enhanced in these troubled regions by activating ℓ1 regularization to promote sparsity in the corresponding jump function of the numerical solution. The resulting ℓ1 optimization problem is efficiently implemented using the alternating direction method of multipliers. By enacting ℓ1 regularization only in troubled cells, our method remains accurate and efficient, as no additional regularization or expensive iterative procedures are needed in smooth regions. We present results for the inviscid Burgers' equation as well as a nonlinear system of conservation laws using a nodal collocation-type DG method as a solver.

Original languageEnglish (US)
Pages (from-to)A1304-A1330
JournalSIAM Journal on Scientific Computing
Issue number2
StatePublished - 2019


  • Discontinuity sensor
  • Discontinuous Galerkin
  • Hyperbolic conservation laws
  • Polynomial annihilation
  • Shock capturing
  • ℓ regularization

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics


Dive into the research topics of 'High order edge sensors with ℓ1 regularization for enhanced discontinuous Galerkin methods'. Together they form a unique fingerprint.

Cite this