Abstract
INTRODUCTION: Machine learning (ML) can optimize amyloid (Aβ) comparability among positron emission tomography (PET) radiotracers. Using multi-regional florbetapir (FBP) measures and ML, we report better Pittsburgh compound-B (PiB)/FBP harmonization of mean-cortical Aβ (mcAβ) than Centiloid. METHODS: PiB-FBP pairs from 92 subjects in www.oasis-brains.org and 46 in www.gaain.org/centiloid-project were used as the training/testing sets. FreeSurfer-extracted FBP multi-regional Aβ and actual PiB mcAβ in the training set were used to train ML models generating synthetic PiB mcAβ. The correlation coefficient (R) between the synthetic/actual PiB mcAβ in the testing set was assessed. RESULTS: In the testing set, the synthetic/actual PiB mcAβ correlation R = 0.985 (R2 = 0.970) using artificial neural network was significantly higher (p ≤ 6.6e-4) than the FBP/PiB correlation R = 0.927 (R2 = 0.860), improving total variance percentage (R2) from 86% to 97%. Other ML models such as partial least square, ensemble, and relevance vector regressions also improved R (p = 9.677e−05/0.045/0.0017). DISCUSSION: ML improved mcAβ comparability. Additional studies are needed for the generalizability to other amyloid tracers, and to tau PET. Highlights Centiloid is a calibration of the amyloid scale, not harmonization. Centiloid unifies the amyloid scale without improving inter-tracer association (R2). Machine learning (ML) can harmonize the amyloid scale by improving R2. ML harmonization maps multi-regional florbetapir SUVRs to PiB mean-cortical SUVR. Artificial neural network ML increases Centiloid R2 from 86% to 97%.
Original language | English (US) |
---|---|
Pages (from-to) | 2165-2172 |
Number of pages | 8 |
Journal | Alzheimer's and Dementia |
Volume | 20 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2024 |
Keywords
- Centiloid
- PiB
- amyloid PET harmonization
- artificial neural network
- florbetapir
- machine learning
ASJC Scopus subject areas
- Epidemiology
- Health Policy
- Developmental Neuroscience
- Clinical Neurology
- Geriatrics and Gerontology
- Cellular and Molecular Neuroscience
- Psychiatry and Mental health