Greenhouse: Single-Service Rehosting of Linux-Based Firmware Binaries in User-Space Emulation

Hui Jun Tay, Kyle Zeng, Jayakrishna Menon Vadayath, Arvind S. Raj, Audrey Dutcher, Tejesh Reddy, Wil Gibbs, Zion Leonahenahe Basque, Fangzhou Dong, Zack Smith, Adam Doupé, Tiffany Bao, Yan Shoshitaishvili, Ruoyu Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As IoT devices grow more widespread, scaling current analysis techniques to match becomes an increasingly critical task. Part of this challenge involves not only rehosting the firmware of these embedded devices in an emulated environment, but to do so and discover real vulnerabilities. Current state-of-the-art approaches for rehosting must account for the discrepancies between emulated and physical devices, and thus generally focus on improving the emulation fidelity. However, this pursuit of fidelity ignores other potential solutions. In this paper, we propose a novel rehosting technique, user-space single-service rehosting, which emulates a single firmware service in user space. We study the rehosting process involved in hundreds of firmware samples to generalize a set of roadblocks that prevent emulation and create interventions to resolve them. Our prototype Greenhouse automatically rehosts 2,841 (39.7%) of our collected 7,140 firmware images from nine different vendors. Our approach sidesteps many of the challenges encountered by previous rehosting techniques and enables us to apply common vulnerability discovery techniques to our rehosted images such as user-space coverage-guided fuzzing. Using these techniques, we find 717 N-day vulnerabilities and 26 zero-day vulnerabilities on a subset of our rehosted firmware services.

Original languageEnglish (US)
Title of host publication32nd USENIX Security Symposium, USENIX Security 2023
PublisherUSENIX Association
Pages5791-5808
Number of pages18
ISBN (Electronic)9781713879497
StatePublished - 2023
Event32nd USENIX Security Symposium, USENIX Security 2023 - Anaheim, United States
Duration: Aug 9 2023Aug 11 2023

Publication series

Name32nd USENIX Security Symposium, USENIX Security 2023
Volume8

Conference

Conference32nd USENIX Security Symposium, USENIX Security 2023
Country/TerritoryUnited States
CityAnaheim
Period8/9/238/11/23

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Greenhouse: Single-Service Rehosting of Linux-Based Firmware Binaries in User-Space Emulation'. Together they form a unique fingerprint.

Cite this