Abstract
Optimization of the green logistics location-routing problem with eco-packages involves solving a two-echelon location-routing problem and the pickup and delivery problem with time windows. The first echelon consists of large eco-package transport, which is modeled by a time-discretized transport-concentrated network flow programming in the resource sharing state–space–time (SST) network. The second echelon focuses on small eco-package pickups and deliveries, established by the cost-minimized synchronization-oriented location routing model that minimizes the total generalized cost, which includes internal transportation cost, value of eco-packages, short-term benefits and environmental externalities. In addition, the Gaussian mixture clustering algorithm is utilized to assign customers to their respective service providers in the pickup and delivery process, and a Clarke–Wright saving method-based non-dominated sorting genetic algorithm II is designed to optimize pickup and delivery routes, and improve their cost-effectiveness and degree of synchronization. Different strategy testing results are used in the service phase as input data to calculate the cost of the transport phase, which is solved through a Lagrangian relaxation approach. The 3D SST network representation innovatively captures the eco-package route sequence and state transition constraints over the shortest path in the pickup and delivery at any given moment of the transport phase. A large-scale logistics network in Chengdu, China, is used to demonstrate the proposed model and algorithm, and undertake sensitivity analysis considering the life cycle of green eco-packages.
Original language | English (US) |
---|---|
Article number | 102118 |
Journal | Transportation Research Part E: Logistics and Transportation Review |
Volume | 143 |
DOIs | |
State | Published - Nov 2020 |
Keywords
- Clarke–Wright
- Lagrangian relaxation model
- Location-routing problem
- State–space–time network
- Synchronization degree
ASJC Scopus subject areas
- Business and International Management
- Civil and Structural Engineering
- Transportation