GRB 180620A: Evidence for Late-time Energy Injection

R. L. Becerra, F. De Colle, A. M. Watson, N. Fraija, N. R. Butler, W. H. Lee, C. G. Román-Zúñiga, J. S. Bloom, J. J. González, A. S. Kutyrev, J. X. Prochaska, E. Ramirez-Ruiz, M. G. Richer, E. Troja

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


The early optical emission of gamma-ray bursts (GRBs) gives an opportunity to understand the central engine and first stages of these events. About 30% of GRBs present flares whose origin is still a subject of discussion. We present optical photometry of GRB 180620A with the COATLI telescope and RATIR instrument. COATLI started to observe from the end of prompt emission at T + 39.3 s and RATIR from T + 121.4 s. We supplement the optical data with the X-ray light curve from Swift/XRT. We observe an optical flare from T + 110 s to T + 550 s, with a temporal index decay α O,decay = 1.32 ± 0.01, and Δt/t = 1.63, which we interpret as the signature of a reverse shock component. After the initial normal decay the light curves show a long plateau from T + 500 s to T + 7800 s in both X-rays and the optical before decaying again after an achromatic jet break at T + 7800 s. Fluctuations are seen during the plateau phase in the optical. Adding to the complexity of GRB afterglows, the plateau phase (typically associated with the coasting phase of the jet) is seen in this object after the "normal" decay phase (associated with the deceleration phase of the jet), and the jet break phase occurs directly after the plateau. We suggest that this sequence of events can be explained by a rapid deceleration of the jet with t d ≲ 40 s due to the high density of the environment (≈100 cm-3) followed by reactivation of the central engine, which causes the flare and powers the plateau phase.

Original languageEnglish (US)
Article number254
JournalAstrophysical Journal
Issue number2
StatePublished - Dec 20 2019

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'GRB 180620A: Evidence for Late-time Energy Injection'. Together they form a unique fingerprint.

Cite this