Geomorphological map of the South Belet Region of Titan

Ashley M. Schoenfeld, Rosaly M.C. Lopes, Michael J. Malaska, Anezina Solomonidou, David A. Williams, Samuel P.D. Birch, Alexander G. Hayes, Paul Corlies, Alice Le Gall, Michael A. Janssen, Stéphane Le Mouélic, Elizabeth Turtle, Meghan Florence, Tiffany Verlander

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We mapped in detail Titan's South Belet region which spans from longitude 60°E to 120°E and from latitude 60°S to 0°, encompassing both equatorial and southern mid-latitude regions. We used Cassini RADAR in its Synthetic Aperture Radar (SAR) mode data as our basemap, which covers 31.8% of the region, supplemented with data from the RADAR's radiometry mode, the Imagining Science Subsystem (ISS), the Visual and Infrared Mapping Spectrometer (VIMS), and topographic data. This mapping work is a continuation of the detailed global mapping effort introduced in Malaska et al. (2016a) and continued in Lopes et al. (2020). We followed the mapping procedure described in Malaska et al. (2016a) for the Afekan Crater region and identified four major terrain classes in South Belet: craters, hummocky/mountainous, plains, and dunes. Each terrain class was subdivided into terrain units by characteristic morphology, including border shape, texture, general appearance, and radar backscatter. There are two terrain units that were not included in previous studies but were identified in our mapping of South Belet: “bright alluvial plains” and “pitted hummocky”. Similar to the Afekan Crater region, we find that plains dominate the surface make-up of South Belet, comprising ~47% of the mapped area. Unlike Afekan, the areal extent of the dunes closely rivals the dominance of plains, making up 43% of the mapped area. The next most widespread unit by area in the region following the dunes are the mountains/hummocky terrains (10%), and finally, crater terrains (0.01%). The introduction of two new units, “bright alluvial plains” and “pitted hummocky”, are necessary to capture the full range of morphologies seen in South Belet and expands our understanding of processes typical of Titan's equatorial and mid-latitude regions. For example, the presence of alluvial fans indicates a period in Titan's past where discharges and slopes were such that sediment could be mobilized and deposited. Similarly, the pits associated with the “pitted hummocky” may represent an important erosional feature, with implications for the removal of volatiles from Titan's crust. However, analysis of our geomorphological mapping results suggests the geology of South Belet is consistent with the narrative of organics dominating the equatorial and mid-latitudes. This is similar to the conclusion we arrived at through our mapping and analysis of the Afekan region. Lastly, the applicability of the terrain units from our mapping of the Afekan region, which bears a similar latitude but in the northern hemisphere, to our mapping of South Belet suggests latitudinal symmetry in Titan's surface processes and their evolution.

Original languageEnglish (US)
Article number114516
JournalIcarus
Volume366
DOIs
StatePublished - Sep 15 2021

Keywords

  • Geologic processes
  • Titan
  • Titan surface

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Geomorphological map of the South Belet Region of Titan'. Together they form a unique fingerprint.

Cite this