Abstract
Our research demonstrates electrospun nonwoven fibrous scaffolds from a low molar mass gemini ammonium surfactant, N,N'-didodecyl-N,N,N',N'-tetramethyl-N, N'-ethanediyldiammonium dibromide (12-2-12). Cryogenic transmission electron microscopy (cryo-TEM) and solution rheological experiments revealed micellar morphological transitions of 12-2-12 in water and watenmethanol (1:1 vol). The microstructure of 12-2-12 in water transitioned from entangled, cylindrical, threadlike micelles to branched threadlike micelles, and a viscoelastic, entangled, highly branched network of threadlike micelles with increasing concentration finally formed. In sharp contrast, the solution behavior of 12-2-12 in watenmethanol produced a drastically different micellar microstructure compared to that in water, and the morphology transitioned from partitioned, globular micelles to overlapped micelles at an overlap concentration (C*) of 11 wt %. Electrospinning 12-2-12 from water did not produce fibers at any concentration; however, electrospinning 122-12 in watenmethanol at concentrations greater than 2C* produced hydrophilic continuous fibers with diameters ranging from 0.9 to 7 μm. High surface area scaffolds with hydrophilic surfaces offer potential as charged controlledrelease membranes, tissue engineering scaffolds, and coatings for biologically compatible devices.
Original language | English (US) |
---|---|
Pages (from-to) | 678-683 |
Number of pages | 6 |
Journal | Langmuir |
Volume | 26 |
Issue number | 2 |
DOIs | |
State | Published - Jan 19 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry