Formation of Carbon-Induced Nitrogen-Centered Radicals on Titanium Dioxide under Illumination

Po Wei Huang, Nianhan Tian, Tijana Rajh, Yu Hsuan Liu, Giada Innocenti, Carsten Sievers, Andrew J. Medford, Marta C. Hatzell

Research output: Contribution to journalArticlepeer-review

Abstract

Titanium dioxide is the most studied photocatalytic material and has been reported to be active for a wide range of reactions, including the oxidation of hydrocarbons and the reduction of nitrogen. However, the molecular-scale interactions between the titania photocatalyst and dinitrogen are still debated, particularly in the presence of hydrocarbons. Here, we used several spectroscopic and computational techniques to identify interactions among nitrogen, methanol, and titania under illumination. Electron paramagnetic resonance spectroscopy (EPR) allowed us to observe the formation of carbon radicals upon exposure to ultraviolet radiation. These carbon radicals are observed to transform into diazo- and nitrogen-centered radicals (e.g., CHxN2 and CHxNHy) during photoreaction in nitrogen environment. In situ infrared (IR) spectroscopy under the same conditions revealed C-N stretching on titania. Furthermore, density functional theory (DFT) calculations revealed that nitrogen adsorption and the thermodynamic barrier to photocatalytic nitrogen fixation are significantly more favorable in the presence of hydroxymethyl or surface carbon. These results provide compelling evidence that carbon radicals formed from the photooxidation of hydrocarbons interact with dinitrogen and suggest that the role of carbon-based “hole scavengers” and the inertness of nitrogen atmospheres should be reevaluated in the field of photocatalysis.

Original languageEnglish (US)
Pages (from-to)3283-3289
Number of pages7
JournalJACS Au
Volume3
Issue number12
DOIs
StatePublished - Dec 25 2023
Externally publishedYes

Keywords

  • Ammonia
  • Carbon−Nitrogen Bond
  • Nitrogen Fixation
  • Photocatalysis
  • Titania

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Formation of Carbon-Induced Nitrogen-Centered Radicals on Titanium Dioxide under Illumination'. Together they form a unique fingerprint.

Cite this