TY - GEN
T1 - Federated learning over wireless networks
T2 - 40th IEEE Conference on Computer Communications, INFOCOM 2021
AU - Zhang, Junshan
AU - Li, Na
AU - Dedeoglu, Mehmet
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/5/10
Y1 - 2021/5/10
N2 - We consider a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data. The unreliable nature of wireless connectivity, together with constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Thus motivated, we propose SGD-based bandlimited coordinate descent algorithms for such settings. Specifically, for the wireless edge employing over-the-air computing, a common subset of k-coordinates of the gradient updates across edge devices are selected by the receiver in each iteration, and then transmitted simultaneously over k sub-carriers, each experiencing time-varying channel conditions. We characterize the impact of communication error and compression, in terms of the resulting gradient bias and mean squared error, on the convergence of the proposed algorithms. We then study learning-driven communication error minimization via joint optimization of power allocation and learning rates. Our findings reveal that optimal power allocation across different sub-carriers should take into account both the gradient values and channel conditions, thus generalizing the widely used water-filling policy. We also develop sub-optimal distributed solutions amenable to implementation.
AB - We consider a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data. The unreliable nature of wireless connectivity, together with constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Thus motivated, we propose SGD-based bandlimited coordinate descent algorithms for such settings. Specifically, for the wireless edge employing over-the-air computing, a common subset of k-coordinates of the gradient updates across edge devices are selected by the receiver in each iteration, and then transmitted simultaneously over k sub-carriers, each experiencing time-varying channel conditions. We characterize the impact of communication error and compression, in terms of the resulting gradient bias and mean squared error, on the convergence of the proposed algorithms. We then study learning-driven communication error minimization via joint optimization of power allocation and learning rates. Our findings reveal that optimal power allocation across different sub-carriers should take into account both the gradient values and channel conditions, thus generalizing the widely used water-filling policy. We also develop sub-optimal distributed solutions amenable to implementation.
UR - http://www.scopus.com/inward/record.url?scp=85111902685&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111902685&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM42981.2021.9488818
DO - 10.1109/INFOCOM42981.2021.9488818
M3 - Conference contribution
AN - SCOPUS:85111902685
T3 - Proceedings - IEEE INFOCOM
BT - INFOCOM 2021 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 10 May 2021 through 13 May 2021
ER -