Failure Modes of Flexible LiCoO2 Cathodes Incorporating Polyvinylidene Fluoride Binders with Different Molecular Weights

Kyungbae Kim, Robert M. Loh, Roberto Martinez, Candace K. Chan, Yoon Hwa

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding the mechanical failure modes of lithium-ion battery [Li-ion batteries (LIBs)] electrodes is exceptionally important for enabling high specific energy and flexible LIB technologies. In this work, the failure modes of lithium cobalt oxide (LCO) cathodes under repeated bending and the role of the polymer binder in improving the mechanical durability of the LCO electrodes for use in flexible LIBs are investigated. Mechanical and electrochemical evaluations of LCO electrodes (areal capacity of ≥2.5 mA h cm-2) employing poly(vinylidene fluoride) (PVDF) binder were carried out, followed by extensive optical and electron microscopies. We find that the molecular weight (MW) of the PVDF significantly influenced the surface and bulk microstructure of the LCO electrodes, particularly the distribution of carbon additive and binder, which plays a crucial role in affecting the mechanical and electrochemical properties of the electrodes. Multiple mechanical failure modes (e.g., surface scratches and microcracks) observed in the LCO electrodes subjected to repeated bending originated from the use of low MW PVDF; these failure modes were successfully mitigated by using a high MW PVDF. Remarkably, the optimized flexible LCO electrode incorporating high MW PVDF showed comparable discharge capacity retention during galvanostatic cycling after repeated bending (7000 cycles at 50 mm bending diameter) to electrodes not subjected to the repeated bending. This study highlights the importance of carrying out a comprehensive investigation of the failure mechanisms in flexible electrodes, which identified the pivotal role of the PVDF MW in the electrode microstructure and its effects on the electrode resilience to failure during repeated bending.

Original languageEnglish (US)
Pages (from-to)5926-5936
Number of pages11
JournalACS Applied Materials and Interfaces
Volume16
Issue number5
DOIs
StatePublished - Feb 7 2024

Keywords

  • PVDF binder
  • flexible lithium-ion batteries
  • peel test
  • scratch test
  • surface failure modes

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Failure Modes of Flexible LiCoO2 Cathodes Incorporating Polyvinylidene Fluoride Binders with Different Molecular Weights'. Together they form a unique fingerprint.

Cite this