Extracting kinetic information from complex gas-solid reaction data

Christopher L. Muhich, Kayla C. Weston, Darwin Arifin, Anthony H. Mcdaniel, Charles B. Musgrave, Alan W. Weimer

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


We develop an approach for extracting gas-solid kinetic information from convoluted experimental data and demonstrate it on isothermal carbon dioxide splitting at high-temperature using CoFe2O4/Al2O3 (i.e., a "hercynite" cycle based on Co-doped FeAl2O4) active material. The reaction kinetics equations we derive account for competing side reactions, namely catalytic CO2 splitting on and O2 oxidation of doped hercynite, in addition to CO2 splitting driven by the oxidation of oxygen-deficient doped hercynite. The model also accounts for experimental effects, such as detector dead time and gas mixing downstream of the reaction chamber, which obscure the intrinsic chemical processes in the raw signal. A second-order surface reaction model in relation to the extent of unreacted material and a 2.4th-order model in relation to CO2 concentration were found to best describe the CO generation of the doped hercynite. Overall, the CO production capacity was found to increase with increasing reduction temperature and CO2 partial pressure, in accordance with previously predicted behavior. The method outlined in this paper is generally applicable to the analysis of other convoluted gas-solid kinetics experiments.

Original languageEnglish (US)
Pages (from-to)4113-4122
Number of pages10
JournalIndustrial and Engineering Chemistry Research
Issue number16
StatePublished - Apr 29 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Extracting kinetic information from complex gas-solid reaction data'. Together they form a unique fingerprint.

Cite this