15 Scopus citations


It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

Original languageEnglish (US)
Title of host publication2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781479943982
StatePublished - Oct 15 2014
Event40th IEEE Photovoltaic Specialist Conference, PVSC 2014 - Denver, United States
Duration: Jun 8 2014Jun 13 2014

Publication series

Name2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014


Other40th IEEE Photovoltaic Specialist Conference, PVSC 2014
Country/TerritoryUnited States


  • CdTe
  • copper
  • grain boundaries
  • impurity diffusion
  • numerical simulation
  • photovoltaic cells

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials


Dive into the research topics of 'Extracting Cu diffusion parameters in polycrystalline CdTe'. Together they form a unique fingerprint.

Cite this