Exception rule mining with a relative interestingness measure

Farhad Hussain, Huan Liu, Einoshin Suzuki, Hongjun Lu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

78 Scopus citations


This paper presents a method for mining exception rules based on a novel measure which estimates interestingness relative to its corresponding common sense rule and reference rule. Mining interesting rules is one of the important data mining tasks. Interesting rules bring novel knowledge that helps decision makers for advantageous actions. It is true that interestingness is a relative issue that depends on the other prior knowledge. However, this estimation can be biased due to the incomplete or inaccurate knowledge about the domain. Even if possible to estimate interestingness, it is not so trivial to judge the interestingness from a huge set of mined rules. Therefore, an automated system is required that can exploit the knowledge extractacted from the data in measuring interestingness. Since the extraicted knowledge comes from the data, so it is possible to find a measure that is unbiased from the user's own belief. An unbiased measure that can estimate the interestingness of a rule with respect to the extractacted rules can be more acceptable to the user. In this work we try to show through the experiments, how our proposed relative measure can give an unbiased estimate of relative interestingness in a rule considering already mined rules.

Original languageEnglish (US)
Title of host publicationKnowledge Discovery and Data Mining
Subtitle of host publicationCurrent Issues and New Applications - 4th Pacific-Asia Conference, PAKDD 2000, Proceedings
EditorsTakao Terano, Huan Liu, Arbee L.P. Chen
PublisherSpringer Verlag
Number of pages12
ISBN (Print)3540673822, 9783540673828
StatePublished - 2000
Externally publishedYes
Event4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2000 - Kyoto, Japan
Duration: Apr 18 2000Apr 20 2000

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Other4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2000

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Exception rule mining with a relative interestingness measure'. Together they form a unique fingerprint.

Cite this