Emergence of scaling associated with complex branched wave structures in optical medium

Xuan Ni, Ying-Cheng Lai, Wen Xu Wang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Branched wave structures, an unconventional wave propagation pattern, can arise in random media. Experimental evidence has accumulated, revealing the occurrence of these waves in systems ranging from microwave and optical systems to solid-state devices. Experiments have also established the universal feature that the wave-intensity statistics deviate from Gaussian and typically possess a long-tail distribution, implying the existence of spatially localized regions with extraordinarily high intensity concentration ("hot" spots). Despite previous efforts, the origin of branched wave pattern is currently an issue of debate. Recently, we proposed a "minimal" model of wave propagation and scattering in optical media, taking into account the essential physics for generating robust branched flows: (1) a finite-size medium for linear wave propagation and (2) random scatterers whose refractive indices deviate continuously from that of the background medium. Here we provide extensive numerical evidence and a comprehensive analytic treatment of the scaling behavior to establish that branched wave patterns can emerge as a general phenomenon in wide parameter regime in between the weak-scattering limit and Anderson localization. The basic physical mechanisms to form branched waves are breakup of waves by a single scatterer and constructive interference of broken waves from multiple scatterers. Despite simplicity of our model, analysis of the scattering field naturally yields an algebraic (power-law) statistic in the high wave-intensity distribution, indicating that our model is able to capture the generic physical origin of these special wave patterns. The insights so obtained can be used to better understand the origin of complex extreme wave patterns, whose occurrences can have significant impact on the performance of the underlying physical systems or devices.

Original languageEnglish (US)
Article number043116
Issue number4
StatePublished - Oct 4 2012

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics


Dive into the research topics of 'Emergence of scaling associated with complex branched wave structures in optical medium'. Together they form a unique fingerprint.

Cite this