Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States

Daniel A. Toffelmier, James Tyburczy

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


A deep-seated melt or fluid layer on top of the 410-km-deep seismic discontinuity in Earth's upper mantle, as proposed in the transition-zone 'water filter' hypothesis, may have significant bearing on mantle dynamics and chemical differentiation. The geophysical detection of such a layer has, however, proved difficult. Magnetotelluric and geomagnetic depth sounding are geophysical methods sensitive to mantle melt. Here we use these methods to search for a distinct structure near 410-km depth. We calculate one-dimensional forward models of the response of electrical conductivity depth profiles, based on mineral physics studies of the effect of incorporating hydrogen in upper-mantle and transition-zone minerals. These models indicate that a melt layer at 410-km depth is consistent with regional magnetotelluric and geomagnetic depth sounding data from the southwestern United States (Tucson). The 410-km-deep melt layer in this model has a conductance of 3.0 × 104 S and an estimated thickness of 5-30 km. This is the only regional data set that we have examined for which such a melt layer structure was found, consistent with regional seismic studies. We infer that the hypothesized transition-zone water filter occurs regionally, but that such a layer is unlikely to be a global feature.

Original languageEnglish (US)
Pages (from-to)991-994
Number of pages4
Issue number7147
StatePublished - Jun 21 2007

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States'. Together they form a unique fingerprint.

Cite this