Dynamics and control of a novel active yaw stabilizer to enhance vehicle lateral motion stability

Fengchen Wang, Yan Chen

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

In this paper, a novel active yaw stabilizer (AYS) system is proposed for improving vehicle lateral stability control. The introduced AYS, inspired by the recent in-wheel motor (IWM) technology, has two degrees-of-freedom with independent self-rotating and orbiting movements. The dynamic model of the AYS is first developed. The capability of the AYS is then investigated to show its maximum generation of corrective lateral forces and yaw moments, given a limited vehicle space. Utilizing the high-level Lyapunov-based control design and the low-level control allocation design, a hierarchical control architecture is established to integrate the AYS control with active front steering (AFS) and direct yaw moment control (DYC). To demonstrate the advantages of the AYS, generating corrective lateral force and yaw moment without relying on tire-road interaction, double lane change maneuvers are studied on road with various tire-road friction coefficients. Co-simulation results, integrating CARSIMV R and MATLAB/SIMULINKV R, successfully verify that the vehicle with the assistance of the AYS system has better lateral dynamics stabilizing performance, compared with cases in which only AFS or DYC is applied.

Original languageEnglish (US)
Article number081007
JournalJournal of Dynamic Systems, Measurement and Control, Transactions of the ASME
Volume140
Issue number8
DOIs
StatePublished - Aug 1 2018

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Information Systems
  • Instrumentation
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Dynamics and control of a novel active yaw stabilizer to enhance vehicle lateral motion stability'. Together they form a unique fingerprint.

Cite this