Dynamic vibrotactile signals for forward collision avoidance warning systems

Fanxing Meng, Rob Gray, Cristy Ho, Mujthaba Ahtamad, Charles Spence

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


Objective: Four experiments were conducted in order to assess the effectiveness of dynamic vibrotactile collisionwarning signals in potentially enhancing safe driving. Background: Auditory neuroscience research has demonstrated that auditory signals that move toward a person are more salient than those that move away. If this looming effect were found to extend to the tactile modality, then it could be utilized in the context of in-car warning signal design. Method: The effectiveness of various vibrotactile warning signals was assessed using a simulated carfollowing task. The vibrotactile warning signals consisted of dynamic toward-/away-from-torso cues (Experiment 1), dynamic versus static vibrotactile cues (Experiment 2), looming-intensity- and constant-intensity-toward-torso cues (Experiment 3), and static cues presented on the hands or on the waist, having either a low or high vibration intensity (Experiment 4). Results: Braking reaction times (BRTs) were significantly faster for toward-torso as compared to away-from-torso cues (Experiments 1 and 2) and static cues (Experiment 2). This difference could not have been attributed to differential responses to signals delivered to different body parts (i.e., the waist vs. hands; Experiment 4). Embedding a loomingintensity signal into the toward-torso signal did not result in any additional BRT benefits (Experiment 3). Conclusion: Dynamic vibrotactile cues that feel as though they are approaching the torso can be used to communicate information concerning external events, resulting in a significantly faster reaction time to potential collisions. Application: Dynamic vibrotactile warning signals that move toward the body offer great potential for the design of future in-car collision-warning system.

Original languageEnglish (US)
Pages (from-to)329-346
Number of pages18
JournalHuman Factors
Issue number2
StatePublished - Mar 16 2015
Externally publishedYes


  • break reaction time
  • car following
  • driving
  • front-to-rear-end collision
  • haptic
  • interface design

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Applied Psychology
  • Behavioral Neuroscience


Dive into the research topics of 'Dynamic vibrotactile signals for forward collision avoidance warning systems'. Together they form a unique fingerprint.

Cite this