dynamic: An R Package for Deriving Dynamic Fit Index Cutoffs for Factor Analysis

Melissa G. Wolf, Daniel McNeish

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of.08,.06, and.96, respectively, established by Hu and Bentler (Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55). However, these indices are affected by model characteristics and their sensitivity to misfit can change across models. Decisions about model fit can therefore be improved by tailoring cutoffs to each model. The methodological literature has proposed methods for deriving customized cutoffs, although it can require knowledge of linear algebra and Monte Carlo simulation. Given that many empirical researchers do not have training in these technical areas, empirical studies largely continue to rely on fixed benchmarks even though they are known to generalize poorly and can be poor arbiters of fit. To address this, this paper introduces the R package, dynamic, to make computation of dynamic fit index cutoffs (which are tailored to the user’s model) more accessible to empirical researchers. dynamic heavily automatizes this process and only requires a lavaan object to automatically conduct several custom Monte Carlo simulations and output fit index cutoffs designed to be sensitive to misfit with the user’s model characteristics.

Original languageEnglish (US)
Pages (from-to)189-194
Number of pages6
JournalMultivariate Behavioral Research
Issue number1
StatePublished - 2023


  • Confirmatory factor analysis
  • R package
  • fit indices

ASJC Scopus subject areas

  • Statistics and Probability
  • Experimental and Cognitive Psychology
  • Arts and Humanities (miscellaneous)


Dive into the research topics of 'dynamic: An R Package for Deriving Dynamic Fit Index Cutoffs for Factor Analysis'. Together they form a unique fingerprint.

Cite this