Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes

Gillian H. Gile, Daniel Moog, Claudio H. Slamovits, Uwe G. Maier, John M. Archibald

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment,many are able to enter two ormore compartments, a phenomenon known as dual ormultiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAsto their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid's red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.

Original languageEnglish (US)
Pages (from-to)1728-1742
Number of pages15
JournalGenome biology and evolution
Volume7
Issue number6
DOIs
StatePublished - Jun 2015
Externally publishedYes

Keywords

  • Guillardia
  • PPC
  • Phaeodactylum
  • Protein targeting
  • pheRS
  • syfB

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Fingerprint

Dive into the research topics of 'Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes'. Together they form a unique fingerprint.

Cite this