This paper aims to model the extrusion-based 3D printing process of a plain ordinary Portland cement (OPC) paste using the discrete element method (DEM), and outlines the methodology adopted to evaluate the linkage between particle scale processes and extrusion process. A mini slump test is used to define the rheological model to be used in DEM, and extract the relevant parameters. They are then implemented in a scaled-down extrusion printing model to determine the influence of particle-scale effects on extrusion force. The DEM model is able to capture the differences in extrusion load-displacement responses similar to the experiments. Refinements to the model based on extracted parameters are also discussed.

Original languageEnglish (US)
Title of host publicationRILEM Bookseries
PublisherSpringer Netherlands
Number of pages11
StatePublished - 2019

Publication series

NameRILEM Bookseries
ISSN (Print)2211-0844
ISSN (Electronic)2211-0852

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanics of Materials


Dive into the research topics of 'Discrete element simulations of rheological response of cementitious binders as applied to 3D printing'. Together they form a unique fingerprint.

Cite this