Developing a framework to better engage students in STEM via game design: Findings from year 1

Rachael Paige Shemran, Renee M. Clark, Melissa M. Bilec, Amy E. Landis, Kristen Parrish

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations


Science, Technology, Engineering, and Math (STEM) teaching strategies that engage students and create an atmosphere of community are desperately needed to recruit, retain, and best prepare students in STEM fields to address challenges facing the 21st Century. Research shows that student performance and persistence in a STEM degree is associated primarily with three aspects of their experience: intellectual engagement and achievement, motivation (e.g., having role models), and identification with a STEM field (e.g., developing meaningful relationships, being part of the community). While there is a large body of work about pedagogies and strategies that address these needs (e.g., active learning, experiential learning, service learning, flipped classrooms, etc.), the majority of university instructors are slow to adopt new teaching strategies. Most STEM faculty were never trained to be teachers, and there are many well documented reasons that faculty are slow to change teaching habits (e.g., (Frederick 1986). According to Sarason and Banbury (2004), "many faculty accept the premises of active learning but do not have adequate tools to bring active learning techniques into the classroom." Games and game-based learning have been used in many classrooms as an active learning strategy. Game-based learning is a well-documented method to engage and motivate students with course material in order to improve student-learning outcomes. One very successful and popular game is Clarkson University's Energy Choices board game. This award-winning board game teaches concepts of energy; research shows that when game play was integrated into the curriculum, this game was shown to increase desired cognitive (e.g., documented improvements to math and science achievement scores) and affective (e.g., student interest and confidence in STEM) outcomes. In addition, the Energy Choices board game is widespread. Using Energy Choices as inspiration, we are developing a framework for integrating game design into civil engineering and construction management curriculum that makes it easier to develop and publish games like Energy Choices. We are developing a set of game design approaches for use in the classroom that promote high levels of student engagement, create a sense of community, improve student metacognition, increase student retention in STEM, all the while being easily transferable and scalable. By involving students in game play and game design, we not only better engage students, we also create community and drive students to higher levels of metacognition. We have also found that following game play with game design easily moves students up the cognitive dimension of Bloom's taxonomy, from merely understanding, to reflection, creation, and evaluation. Board games and role-playing games are formats that create community; students interact with one another over intellectual, enjoyable, and memorable shared experiences. When the co-authors play board games in their classrooms, they note 100% of students in class that day engage in game play - anecdotally, this activity seems to engage more students than other types of active learning strategies. And finally, board games and role-playing games are an ideal format because any faculty or student can easily modify them. This poster presents our project results to date and provides recommendations and resources to adopt game design in civil engineering and construction courses nationwide.

Original languageEnglish (US)
JournalASEE Annual Conference and Exposition, Conference Proceedings
StatePublished - Jun 24 2017
Event124th ASEE Annual Conference and Exposition - Columbus, United States
Duration: Jun 25 2017Jun 28 2017

ASJC Scopus subject areas

  • Engineering(all)


Dive into the research topics of 'Developing a framework to better engage students in STEM via game design: Findings from year 1'. Together they form a unique fingerprint.

Cite this