Detecting vulnerability of humid tropical forests to multiple stressors

Sassan Saatchi, Marcos Longo, Liang Xu, Yan Yang, Hitofumi Abe, Michel André, Juliann E. Aukema, Nuno Carvalhais, Hinsby Cadillo-Quiroz, Gillian Ann Cerbu, Janet M. Chernela, Kristofer Covey, Lina María Sánchez-Clavijo, Isai V. Cubillos, Stuart J. Davies, Veronique De Sy, Francois De Vleeschouwer, Alvaro Duque, Alice Marie Sybille Durieux, Kátia De Avila FernandesLuis E. Fernandez, Victoria Gammino, Dennis P. Garrity, David A. Gibbs, Lucy Gibbon, Gae Yansom Gowae, Matthew Hansen, Nancy Lee Harris, Sean P. Healey, Robert G. Hilton, Christine May Johnson, Richard Sufo Kankeu, Nadine Therese Laporte-Goetz, Hyongki Lee, Thomas Lovejoy, Margaret Lowman, Raymond Lumbuenamo, Yadvinder Malhi, Jean Michel M. Albert Martinez, Carlos Nobre, Adam Pellegrini, Jeremy Radachowsky, Francisco Román, Diane Russell, Douglas Sheil, Thomas B. Smith, Robert G.M. Spencer, Fred Stolle, Hesti Lestari Tata, Dennis del Castillo Torres, Raphael Muamba Tshimanga, Rodrigo Vargas, Michelle Venter, Joshua West, Atiek Widayati, Sylvia N. Wilson, Steven Brumby, Aurora C. Elmore

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Humid tropical forests play a dominant role in the functioning of Earth but are under increasing threat from changes in land use and climate. How forest vulnerability varies across space and time and what level of stress forests can tolerate before facing a tipping point are poorly understood. Here, we develop a tropical forest vulnerability index (TFVI) to detect and evaluate the vulnerability of global tropical forests to threats across space and time. We show that climate change together with land-use change have slowed the recovery rate of forest carbon cycling. Temporal autocorrelation, as an indicator of this slow recovery, increases substantially for above-ground biomass, gross primary production, and evapotranspiration when climate stress reaches a critical level. Forests in the Americas exhibit extensive vulnerability to these stressors, while in Africa, forests show relative resilience to climate, and in Asia reveal more vulnerability to land use and fragmentation. TFVI can systematically track the response of tropical forests to multiple stressors and provide early-warning signals for regions undergoing critical transitions.

Original languageEnglish (US)
Pages (from-to)988-1003
Number of pages16
JournalOne Earth
Volume4
Issue number7
DOIs
StatePublished - Jul 23 2021
Externally publishedYes

Keywords

  • Amazon
  • Congo
  • autocorrelation
  • carbon cycle
  • climate stress
  • early warning
  • forest response
  • humid tropical forests
  • tipping point
  • vulnerability index

ASJC Scopus subject areas

  • General Environmental Science
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Detecting vulnerability of humid tropical forests to multiple stressors'. Together they form a unique fingerprint.

Cite this