Detecting fake news over online social media via domain reputations and content understanding

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates the opinions and sentiments of the public. Detecting fake news is a daunting challenge due to subtle difference between real and fake news. As a first step of fighting with fake news, this paper characterizes hundreds of popular fake and real news measured by shares, reactions, and comments on Facebookfrom two perspectives: domain reputations and content understanding. Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors, registration timing, domain rankings, and domain popularity. In addition, fake news tends to disappear from the Web after a certain amount of time. The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency (tf-idf) and Latent Dirichlet Allocation (LDA) topic modeling is inefficient in detecting fake news, while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news. To the best of our knowledge, this is the first effort to systematically study domain reputations and content characteristics of fake and real news, which will provide key insights for effectively detecting fake news on social media.

Original languageEnglish (US)
Article number8768083
Pages (from-to)20-27
Number of pages8
JournalTsinghua Science and Technology
Issue number1
StatePublished - Feb 2020


  • content modeling
  • domain reputations
  • fake news detection
  • social media

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Detecting fake news over online social media via domain reputations and content understanding'. Together they form a unique fingerprint.

Cite this