Data-Driven Flow and Injection Estimation in PMU-Unobservable Transmission Systems

Satyaprajna Sahoo, Anwarul Islam Sifat, Anamitra Pal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Fast and accurate knowledge of power flows and power injections is needed for a variety of applications in the electric grid. Phasor measurement units (PMUs) can be used to directly compute them at high speeds; however, a large number of PMUs will be needed for computing all the flows and injections. Similarly, if they are calculated from the outputs of a linear state estimator, then their accuracy will deteriorate due to the quadratic relationship between voltage and power. This paper employs machine learning to perform fast and accurate flow and injection estimation in power systems that are sparsely observed by PMUs. We train a deep neural network (DNN) to learn the mapping function between PMU measurements and power flows/injections. The relation between power flows and injections is incorporated into the DNN by adding a linear constraint to its loss function. The results obtained using the IEEE 118-bus system indicate that the proposed approach performs more accurate flow/injection estimation in severely unobservable power systems compared to other data-driven methods.

Original languageEnglish (US)
Title of host publication2023 IEEE Power and Energy Society General Meeting, PESGM 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665464413
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE Power and Energy Society General Meeting, PESGM 2023 - Orlando, United States
Duration: Jul 16 2023Jul 20 2023

Publication series

NameIEEE Power and Energy Society General Meeting
Volume2023-July
ISSN (Print)1944-9925
ISSN (Electronic)1944-9933

Conference

Conference2023 IEEE Power and Energy Society General Meeting, PESGM 2023
Country/TerritoryUnited States
CityOrlando
Period7/16/237/20/23

Keywords

  • Flow and Injection estimation
  • Machine learning (ML)
  • Phasor measurement unit (PMU)
  • Unobservability

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Nuclear Energy and Engineering
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Data-Driven Flow and Injection Estimation in PMU-Unobservable Transmission Systems'. Together they form a unique fingerprint.

Cite this