Curvature Effects in Alloy Dissolution

Research output: Contribution to journalArticlepeer-review

162 Scopus citations


An elemental metal can dissolve at kink sites at low everpotentials producing no new interfacial area. When an ideal solid solution alloy undergoes selective dissolution, this situation is not possible owing to atomic-scale disorder. Dissolution of the less noble constituent can proceed only by injection of regions of negative curvature into the solid surface, which increases the interfacial area. We present a thermodynamic analysis which accounts for these capillary effects in alloy dissolution. The phenomenon of the critical potential for macroscopic selective dissolution is analyzed in terms of a kinetic roughening transition. This transition results from a competition between curvature-dependent dissolution and surface diffusion. An expression for the critical potential as a function of alloy composition is developed. The dealloying threshold corresponds to a critical composition on the line of critical potentials defining the roughening transition.

Original languageEnglish (US)
Pages (from-to)2868-2872
Number of pages5
JournalJournal of the Electrochemical Society
Issue number10
StatePublished - Oct 1993
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry


Dive into the research topics of 'Curvature Effects in Alloy Dissolution'. Together they form a unique fingerprint.

Cite this