CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles

Daniel Finkelstein-Shapiro, Sarah Hurst Petrosko, Nada M. Dimitrijevic, David Gosztola, Kimberly A. Gray, Tijana Rajh, Tarakeshwar Pilarisetty, Vladimiro Mujica

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Salicylate and salicylic acid derivatives act as electron donors via charge-transfer complexes when adsorbed on semiconducting surfaces. When photoexcited, charge is injected into the conduction band directly from their highest occupied molecular orbital (HOMO) without needing mediation by the lowest unoccupied molecular orbital (LUMO). In this study, we successfully induce the chemical participation of carbon dioxide in a charge transfer state using 3-aminosalicylic acid (3ASA). We determine the geometry of CO2 using a combination of ultraviolet-visible spectroscopy (UV-vis), surface enhanced Raman scattering (SERS), 13C NMR, and electron paramagnetic resonance (EPR). We find CO2 binds on Ti sites in a carbonate form and discern via EPR a surface Ti-centered radical in the vicinity of CO 2, suggesting successful charge transfer from the sensitizer to the neighboring site of CO2. This study opens the possibility of analyzing the structural and electronic properties of the anchoring sites for CO2 on semiconducting surfaces and proposes a set of tools and experiments to do so.

Original languageEnglish (US)
Pages (from-to)475-479
Number of pages5
JournalJournal of Physical Chemistry Letters
Issue number3
StatePublished - Feb 7 2013


  • CO activation
  • SERS
  • TiO
  • catechol
  • charge-transfer

ASJC Scopus subject areas

  • General Materials Science
  • Physical and Theoretical Chemistry


Dive into the research topics of 'CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles'. Together they form a unique fingerprint.

Cite this