Abstract
Aqueous corrosion, atmospheric corrosion, and ionic liquid dissolution studies were performed on commercial alloys AZ31B, AM60, and AZ91D and compared with previously reported results for single-phase binary Mg-Al alloys containing similar Al concentrations (αMg-2 at% Al, αMg-5 at% Al, and Mg-8 at% Al). Polarization studies in 0.6 M NaCl were used to characterize the aqueous free corrosion behavior during 20-h free immersion. Accelerated corrosion testing was performed using a rotating-disk electrode which revealed the evolution of an Al-rich mud-cracking and platelet morphology. Atmospheric droplet testing showed rapid pH increases that depended on the Al concentration in the alloy. Time-dependent contact angle measurements showed that the degree of droplet wetting increased during free corrosion by ∼50 over 20 h in 0.6 M NaCl. Ionic liquid dissolution studies in 1:2 M choline chloride:urea deep eutectic solvent were performed in order to examine the current-voltage behavior of these alloys in the absence of water and hydrogen reduction. The results of these studies revealed the formation of nanowire corrosion morphologies within a honeycomb lattice structure which we attribute to selective dissolution of Mg via a two-dimensional step-flow process.
Original language | English (US) |
---|---|
Article number | 101510 |
Journal | Journal of the Electrochemical Society |
Volume | 167 |
Issue number | 10 |
DOIs | |
State | Published - Jan 6 2020 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry