Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors

Justin J. Baker, Erik Scheme, Kevin Englehart, Douglas T. Hutchinson, Bradley Greger

Research output: Contribution to journalArticlepeer-review

62 Scopus citations


A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%). When the algorithm was trained and tested on data collected the same day, the average performance was 43.8 ± 3.6 %n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5 ± 3.4 %n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.

Original languageEnglish (US)
Article number5445014
Pages (from-to)424-432
Number of pages9
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Issue number4
StatePublished - Aug 2010
Externally publishedYes


  • Decode
  • electromyography
  • fingers
  • parallel algorithms

ASJC Scopus subject areas

  • Internal Medicine
  • Neuroscience(all)
  • Biomedical Engineering


Dive into the research topics of 'Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors'. Together they form a unique fingerprint.

Cite this