Configurational entropy of polar glass formers and the effect of electric field on glass transition

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ργ/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

Original languageEnglish (US)
Article number034504
JournalJournal of Chemical Physics
Issue number3
StatePublished - Jul 21 2016

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Configurational entropy of polar glass formers and the effect of electric field on glass transition'. Together they form a unique fingerprint.

Cite this