Abstract
Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area. Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. Here, recent studies on composition or bandgap-graded semiconductor alloy nanowires based on a single substrate or along single nanowires are reviewed.
Original language | English (US) |
---|---|
Pages (from-to) | 13-33 |
Number of pages | 21 |
Journal | Advanced Materials |
Volume | 24 |
Issue number | 1 |
DOIs | |
State | Published - Jan 3 2012 |
Keywords
- graded bandgap
- nanowire
- semiconductor alloy
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering