Complexity in Hamiltonian-driven dissipative chaotic dynamical systems

Ying Cheng Lai, Celso Grebogi

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, strange nonchaotic, and chaotic with different positive Lyapunov exponents. Finite perturbations in initial conditions or parameters can lead to a change from nonchaotic attractors to chaotic attractors. However, arbitrarily small perturbations can lead to dynamically distinct chaotic attractors. This work demonstrates that the interplay between conservative and dissipative dynamics can give rise to rich complexity even in physical systems with a few degrees of freedom.

Original languageEnglish (US)
Pages (from-to)4667-4675
Number of pages9
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number5
StatePublished - 1996
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Complexity in Hamiltonian-driven dissipative chaotic dynamical systems'. Together they form a unique fingerprint.

Cite this