Collimation and asymmetry of the hot blast wave from the recurrent nova V745 Sco

Jeremy J. Drake, Laura Delgado, J. Martin Laming, Sumner Starrfield, Vinay Kashyap, Salvatore Orlando, Kim L. Page, M. Hernanz, J. U. Ness, R. D. Gehrz, Daan Van Rossum, Charles E. Woodward

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M Ȯ. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

Original languageEnglish (US)
Article number95
JournalAstrophysical Journal
Issue number2
StatePublished - Jul 10 2016


  • X-rays: binaries
  • X-rays: stars
  • novae, cataclysmic variables
  • shock waves
  • stars: individual (V745 Sco)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Collimation and asymmetry of the hot blast wave from the recurrent nova V745 Sco'. Together they form a unique fingerprint.

Cite this