Central auditory development: Evidence from CAEP measurements in children fit with cochlear implants

Michael Dorman, Anu Sharma, Phillip Gilley, Kathryn Martin, Peter Roland

Research output: Contribution to journalArticlepeer-review

85 Scopus citations


In normal-hearing children the latency of the P1 component of the cortical evoked response to sound varies as a function of age and, thus, can be used as a biomarker for maturation of central auditory pathways. We assessed P1 latency in 245 congenitally deaf children fit with cochlear implants following various periods of auditory deprivation. If children experience less than 3.5 years of auditory deprivation before implantation, P1 latencies fall into the range of normal following 3-6 months of electrical stimulation. Children who experience greater than 7 years of deprivation, however, generally do not develop normal P1 latencies even after years of stimulation. Moreover, the waveforms for these patients can be markedly abnormal. Cortical reorganization stimulated by deprivation is likely to be a significant factor in both variation in the latency and morphology of the cortical evoked response to sound for children fit with a cochlear implant and variation in the development of oral speech and language function. Learning outcomes: The reader will be introduced to research using cortical evoked responses (CAEPs), positron emission tomography (PET) scans and in-depth recording from the auditory cortex of congenitally deaf cats that converges on the existence of a sensitive period for the development of central auditory pathways in children. The reader will also be provided with two case studies that illustrate the use of the P1 response as biomarker for development of central auditory pathways. Finally, suggestions for future research will be provided.

Original languageEnglish (US)
Pages (from-to)284-294
Number of pages11
JournalJournal of Communication Disorders
Issue number4
StatePublished - Jul 2007

ASJC Scopus subject areas

  • Experimental and Cognitive Psychology
  • Linguistics and Language
  • Cognitive Neuroscience
  • LPN and LVN
  • Speech and Hearing


Dive into the research topics of 'Central auditory development: Evidence from CAEP measurements in children fit with cochlear implants'. Together they form a unique fingerprint.

Cite this