Abstract
In this paper we show that for observables which involve the measurement of weak charge in final states in hadronic collisions, the standard parton model picture breaks down at scales well above the weak scale due to nonfactorizable electroweak corrections at leading order in the power expansion. This implies that the resummation of these factorization-violating logarithms, which start at order αs2αW2log4(Q2/MW2), cannot be accomplished solely by following standard DGLAP evolution equations; other techniques will be needed to systematically sum large logarithms.
Original language | English (US) |
---|---|
Article number | 096008 |
Journal | Physical Review D |
Volume | 100 |
Issue number | 9 |
DOIs | |
State | Published - Nov 13 2019 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
Fingerprint
Dive into the research topics of 'Breakdown of the naive parton model in super-weak scale collisions'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical Review D, Vol. 100, No. 9, 096008, 13.11.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Breakdown of the naive parton model in super-weak scale collisions
AU - Baumgart, Matthew
AU - Erdoǧan, Ozan
AU - Rothstein, Ira Z.
AU - Vaidya, Varun
N1 - Funding Information: We would like to thank Duff Neill and Iain Stewart for useful discussions. M. B. and O. E. are supported by the U.S. Department of Energy, under Grant No. DE-SC-0000232627. The work of O. E. was also supported by the DOE Grant No. DE-SC-0010118. I. Z. R. is supported by DOE HEP Grants No. DE-FG02-04ER41338 and No. FG02-06ER41449. V. V. is supported by the U.S. Department of Energy through the Office of Nuclear Physics under Contract No. DE-AC52-06NA25396 and through the LANL/LDRD Program. M. B. and O. E. would like to thank Los Alamos National Laboratory for their hospitality, while part of this work was done. [1] 1a G. T. Bodwin , Phys. Rev. D 31 , 2616 ( 1985 ); PRVDAQ 0556-2821 10.1103/PhysRevD.31.2616 1b G. T. Bodwin Phys. Rev. D 34 , 3932(E) ( 1986 ). PRVDAQ 0556-2821 10.1103/PhysRevD.34.3932 [2] 2a J. C. Collins , D. E. Soper , and G. Sterman , Nucl. Phys. B261 , 104 ( 1985 ); NUPBBO 0550-3213 10.1016/0550-3213(85)90565-6 2b J. C. Collins , D. E. Soper , and G. Sterman Nucl. Phys. B308 , 833 ( 1988 ). NUPBBO 0550-3213 10.1016/0550-3213(88)90130-7 [3] 3a G. Altarelli and G. Parisi , Nucl. Phys. B126 , 298 ( 1977 ); NUPBBO 0550-3213 10.1016/0550-3213(77)90384-4 3b V. N. Gribov and L. N. Lipatov , Yad. Fiz. 15 , 781, 1218 ( 1972 ) IDFZA7 0044-0027 3c [ V. N. Gribov and L. N. Lipatov Sov. J. Nucl. Phys. 15 , 438 , 675 ( 1972 )]; SJNCAS 0038-5506 3d Y. L. Dokshitzer , Zh. Eksp. Teor. Fiz. 73 , 1216 ( 1977 ) ZETFA7 0044-4510 3e [ Y. L. Dokshitzer Sov. Phys. JETP 46 , 641 ( 1977 )]. SPHJAR 0038-5646 [4] 4a C. W. Bauer , S. Fleming , and M. E. Luke , Phys. Rev. D 63 , 014006 ( 2000 ); PRVDAQ 0556-2821 10.1103/PhysRevD.63.014006 4b C. W. Bauer , S. Fleming , D. Pirjol , and I. W. Stewart , Phys. Rev. D 63 , 114020 ( 2001 ); PRVDAQ 0556-2821 10.1103/PhysRevD.63.114020 4c C. W. Bauer , D. Pirjol , and I. W. Stewart , Phys. Rev. D 65 , 054022 ( 2002 ). PRVDAQ 0556-2821 10.1103/PhysRevD.65.054022 [5] 5 C. W. Bauer , S. Fleming , D. Pirjol , I. Z. Rothstein , and I. W. Stewart , Phys. Rev. D 66 , 014017 ( 2002 ). PRVDAQ 0556-2821 10.1103/PhysRevD.66.014017 [6] 6 M. Diehl , J. R. Gaunt , D. Ostermeier , P. Plößl , and A. Schäfer , J. High Energy Phys. 01 ( 2016 ) 076 . JHEPFG 1029-8479 10.1007/JHEP01(2016)076 [7] 7 I. Z. Rothstein and I. W. Stewart , J. High Energy Phys. 08 ( 2016 ) 025 . JHEPFG 1029-8479 10.1007/JHEP08(2016)025 [8] 8 S. Alioli , C. W. Bauer , S. Guns , and F. J. Tackmann , Eur. Phys. J. C 76 , 614 ( 2016 ). EPCFFB 1434-6044 10.1140/epjc/s10052-016-4458-1 [9] 9 J. Y. Chiu , A. Fuhrer , R. Kelley , and A. V. Manohar , Phys. Rev. D 80 , 094013 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.80.094013 [10] 10 C. W. Bauer , N. Ferland , and B. R. Webber , J. High Energy Phys. 08 ( 2017 ) 036 . JHEPFG 1029-8479 10.1007/JHEP08(2017)036 [11] 11 P. Ciafaloni and D. Comelli , Phys. Lett. B 446 , 278 ( 1999 ). PYLBAJ 0370-2693 10.1016/S0370-2693(98)01541-X [12] 12a M. Ciafaloni , P. Ciafaloni , and D. Comelli , Phys. Rev. Lett. 84 , 4810 ( 2000 ); PRLTAO 0031-9007 10.1103/PhysRevLett.84.4810 12b M. Ciafaloni , P. Ciafaloni , and D. Comelli Nucl. Phys. B589 , 359 ( 2000 ); NUPBBO 0550-3213 10.1016/S0550-3213(00)00508-3 12c M. Ciafaloni , P. Ciafaloni , and D. Comelli Phys. Lett. B 501 , 216 ( 2001 ); PYLBAJ 0370-2693 10.1016/S0370-2693(01)00127-7 12d M. Ciafaloni , P. Ciafaloni , and D. Comelli Phys. Rev. Lett. 88 , 102001 ( 2002 ). PRLTAO 0031-9007 10.1103/PhysRevLett.88.102001 [13] 13 B. Grinstein and I. Z. Rothstein , Phys. Rev. D 57 , 78 ( 1998 ). PRVDAQ 0556-2821 10.1103/PhysRevD.57.78 [14] 14a J. Y. Chiu , A. Jain , D. Neill , and I. Z. Rothstein , J. High Energy Phys. 05 ( 2012 ) 084 ; JHEPFG 1029-8479 10.1007/JHEP05(2012)084 14b J. y. Chiu , A. Jain , D. Neill , and I. Z. Rothstein , Phys. Rev. Lett. 108 , 151601 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.151601 [15] 15 M. Baumgart , I. Z. Rothstein , and V. Vaidya , Phys. Rev. Lett. 114 , 211301 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.114.211301 [16] 16 M. Baumgart , T. Cohen , I. Moult , N. L. Rodd , T. R. Slatyer , M. P. Solon , I. W. Stewart , and V. Vaidya , J. High Energy Phys. 03 ( 2018 ) 117 . JHEPFG 1029-8479 10.1007/JHEP03(2018)117 [17] 17 C. W. Bauer , D. Provasoli , and B. R. Webber , J. High Energy Phys. 11 ( 2018 ) 030 . JHEPFG 1029-8479 10.1007/JHEP11(2018)030 [18] 18 A. V. Manohar and W. J. Waalewijn , J. High Energy Phys. 08 ( 2018 ) 137 . JHEPFG 1029-8479 10.1007/JHEP08(2018)137 [19] 19 A. V. Manohar , T. Mehen , D. Pirjol , and I. W. Stewart , Phys. Lett. B 539 , 59 ( 2002 ). PYLBAJ 0370-2693 10.1016/S0370-2693(02)02029-4 [20] 20 M. Baumgart , O. Erdoğan , I. Z. Rothstein , and V. Vaidya (to be published). [21] 21a I. Z. Rothstein , Phys. Rev. D 70 , 054024 ( 2004 ); PRVDAQ 1550-7998 10.1103/PhysRevD.70.054024 21b A. K. Leibovich , Z. Ligeti , and M. B. Wise , Phys. Lett. B 564 , 231 ( 2003 ). PYLBAJ 0370-2693 10.1016/S0370-2693(03)00565-3 [22] 22a E. A. Kuraev , L. N. Lipatov , and V. S. Fadin , Zh. Eksp. Teor. Fiz. 72 , 377 ( 1977 ) ZETFA7 0044-4510 22b [ E. A. Kuraev , L. N. Lipatov , and V. S. Fadin Sov. Phys. JETP 45 , 199 ( 1977 )]; SPHJAR 0038-5646 22c I. I. Balitsky and L. N. Lipatov , Yad. Fiz. 28 , 1597 ( 1978 ) IDFZA7 0044-0027 22d [ I. I. Balitsky and L. N. Lipatov Sov. J. Nucl. Phys. 28 , 822 ( 1978 )]. SJNCAS 0038-5506 Publisher Copyright: © 2019 authors. Published by the American Physical Society.
PY - 2019/11/13
Y1 - 2019/11/13
N2 - In this paper we show that for observables which involve the measurement of weak charge in final states in hadronic collisions, the standard parton model picture breaks down at scales well above the weak scale due to nonfactorizable electroweak corrections at leading order in the power expansion. This implies that the resummation of these factorization-violating logarithms, which start at order αs2αW2log4(Q2/MW2), cannot be accomplished solely by following standard DGLAP evolution equations; other techniques will be needed to systematically sum large logarithms.
AB - In this paper we show that for observables which involve the measurement of weak charge in final states in hadronic collisions, the standard parton model picture breaks down at scales well above the weak scale due to nonfactorizable electroweak corrections at leading order in the power expansion. This implies that the resummation of these factorization-violating logarithms, which start at order αs2αW2log4(Q2/MW2), cannot be accomplished solely by following standard DGLAP evolution equations; other techniques will be needed to systematically sum large logarithms.
UR - http://www.scopus.com/inward/record.url?scp=85075132757&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075132757&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.096008
DO - 10.1103/PhysRevD.100.096008
M3 - Article
AN - SCOPUS:85075132757
SN - 2470-0010
VL - 100
JO - Physical Review D
JF - Physical Review D
IS - 9
M1 - 096008
ER -