TY - JOUR
T1 - Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity
AU - Bello, Nicholas T.
AU - Yeh, Chung Yang
AU - Verpeut, Jessica L.
AU - Walters, Amy L.
PY - 2014/4/2
Y1 - 2014/4/2
N2 - Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2- bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensoryevoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable foods dampen the stress neuraxis.
AB - Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2- bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensoryevoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable foods dampen the stress neuraxis.
UR - http://www.scopus.com/inward/record.url?scp=84898871433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898871433&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0093610
DO - 10.1371/journal.pone.0093610
M3 - Article
C2 - 24695494
AN - SCOPUS:84898871433
SN - 1932-6203
VL - 9
JO - PloS one
JF - PloS one
IS - 4
M1 - e93610
ER -