Big open-source social science: Capabilities and methodology for automating social science analytics

Anthony Palladino, Elisa Bienenstock, Christopher A. George, Kendra E. Moore

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Currently, obtaining reliable situational awareness of the social landscape is an arduous, lengthy process involving manual analyses by social scientists. These traditional methods do not scale to the speed and diversity required by DoD operations or the high-speed, international business model in today's corporate environment. Conversely, "big data" easily scales to meet these challenges but lacks the rigor of social science theory. We present Big Open-Source Social Science (BOSSS), a research and development project that leverages the strengths of social- and computer-science technology to address the operational need for rapid and reliable human-landscape situational-awareness. BOSSS iteratively filters, navigates, and summarizes diverse open-source data to characterize a local population's social structure, conflicts, cleavages, affinities, and animosities. BOSSS automatically scrapes open-access data from the web and performs natural language processing to populate a knowledge graph with a custom schema. BOSSS then mines the graph to extract key, theory-agnostic socialscience principles of human inter-relations and dynamics: Homophily, stratification, sentiment, and conflict. Automated quantitative social-network analysis provides up-to-date indicators of trends or anomalies within the local population's social landscape. BOSSS's emerging technology will provide a dramatic reduction in the cognitive workload for the next generation of analysts and will facilitate more rapid situational awareness both for deployed soldiers and private companies conducting operations abroad.

Original languageEnglish (US)
Title of host publicationNext-Generation Analyst VI
EditorsJames Llinas, Timothy P. Hanratty
ISBN (Electronic)9781510618176
StatePublished - 2018
EventNext-Generation Analyst VI 2018 - Orlando, United States
Duration: Apr 16 2018Apr 17 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherNext-Generation Analyst VI 2018
Country/TerritoryUnited States


  • Social situational awareness
  • automated social science
  • multi-modal data fusion
  • social network analysis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Big open-source social science: Capabilities and methodology for automating social science analytics'. Together they form a unique fingerprint.

Cite this