TY - JOUR
T1 - Behavior of blood plasma glycan features in bladder cancer
AU - Ferdosi, Shadi
AU - Ho, Thai H.
AU - Castle, Erik P.
AU - Stanton, Melissa L.
AU - Borges, Chad
N1 - Funding Information:
Research reported in this publication was supported by the Flinn Foundation (https://www. flinn.org) (Grant No. 1977 to CB) and the National Cancer Institute of the National Institutes of Health (https://www.cancer.gov) under Award Number R33 CA191110 (to CB). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Flinn Foundation or the National Institutes of Health. The
Publisher Copyright:
© 2018 Ferdosi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/7
Y1 - 2018/7
N2 - Despite systemic therapy and cystectomy, bladder cancer is characterized by a high recurrence rate. Serum glycomics represents a promising source of prognostic markers for monitoring patients. Our approach, which we refer to as “glycan node analysis”, constitutes the first example of molecularly “bottom-up” glycomics. It is based on a global glycan methylation analysis procedure that is applied to whole blood plasma/serum. The approach detects and quantifies partially methylated alditol acetates arising from unique glycan features such as α2–6 sialylation, β1–4 branching, and core fucosylation that have been pooled together from across all intact glycans within a sample into a single GC-MS chromatographic peak. We applied this method to 122 plasma samples from former and current bladder cancer patients (n = 72 former cancer patients with currently no evidence of disease (NED); n = 38 non-muscle invasive bladder cancer (NMIBC) patients; and n = 12 muscle invasive bladder cancer (MIBC) patients) along with plasma from 30 certifiably healthy living kidney donors. Markers for α2–6 sialylation, β1–4 branching, β1–6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from certifiably healthy controls (ROC curve c-statistics ~ 0.80); but NED, NMIBC, and MIBC were not distinguished from one another. Based on the unexpectedly high levels of these glycan nodes in the NED patients, we hypothesized that recurrence of this disease could be predicted by some of the elevated glycan features. Indeed, α2–6 sialylation and β1–6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. The levels of these two glycan features were correlated to C-reactive protein concentration, an inflammation marker and known prognostic indicator for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
AB - Despite systemic therapy and cystectomy, bladder cancer is characterized by a high recurrence rate. Serum glycomics represents a promising source of prognostic markers for monitoring patients. Our approach, which we refer to as “glycan node analysis”, constitutes the first example of molecularly “bottom-up” glycomics. It is based on a global glycan methylation analysis procedure that is applied to whole blood plasma/serum. The approach detects and quantifies partially methylated alditol acetates arising from unique glycan features such as α2–6 sialylation, β1–4 branching, and core fucosylation that have been pooled together from across all intact glycans within a sample into a single GC-MS chromatographic peak. We applied this method to 122 plasma samples from former and current bladder cancer patients (n = 72 former cancer patients with currently no evidence of disease (NED); n = 38 non-muscle invasive bladder cancer (NMIBC) patients; and n = 12 muscle invasive bladder cancer (MIBC) patients) along with plasma from 30 certifiably healthy living kidney donors. Markers for α2–6 sialylation, β1–4 branching, β1–6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from certifiably healthy controls (ROC curve c-statistics ~ 0.80); but NED, NMIBC, and MIBC were not distinguished from one another. Based on the unexpectedly high levels of these glycan nodes in the NED patients, we hypothesized that recurrence of this disease could be predicted by some of the elevated glycan features. Indeed, α2–6 sialylation and β1–6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. The levels of these two glycan features were correlated to C-reactive protein concentration, an inflammation marker and known prognostic indicator for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
UR - http://www.scopus.com/inward/record.url?scp=85050377835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050377835&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0201208
DO - 10.1371/journal.pone.0201208
M3 - Article
C2 - 30040854
AN - SCOPUS:85050377835
SN - 1932-6203
VL - 13
JO - PloS one
JF - PloS one
IS - 7
M1 - e0201208
ER -