TY - GEN
T1 - Automatic classification and detection of clinically-relevant images for diabetic retinopathy
AU - Xu, Xinyu
AU - Li, Baoxin
PY - 2008
Y1 - 2008
N2 - We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using Expectation-Maximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.
AB - We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using Expectation-Maximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.
KW - Computer-aided diagnosis
KW - Diabetic retinopathy lesion detection and classification
KW - Image retrieval
KW - Multiple-instance learning
UR - http://www.scopus.com/inward/record.url?scp=44349150338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44349150338&partnerID=8YFLogxK
U2 - 10.1117/12.769858
DO - 10.1117/12.769858
M3 - Conference contribution
AN - SCOPUS:44349150338
SN - 9780819470997
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2008 - Computer-Aided Diagnosis
T2 - Medical Imaging 2008 - Computer-Aided Diagnosis
Y2 - 19 February 2008 through 21 February 2008
ER -