An interdependent metabolic patchwork in the nested symbiosis of mealybugs

John P. McCutcheon, Carol D. Von Dohlen

Research output: Contribution to journalArticlepeer-review

251 Scopus citations


Highly reduced genomes of 144-416 kilobases have been described from nutrient-provisioning bacterial symbionts of several insect lineages [1-5]. Some host insects have formed stable associations with pairs of bacterial symbionts that live in specialized cells and provide them with essential nutrients; genomic data from these systems have revealed remarkable levels of metabolic complementarity between the symbiont pairs [3, 4, 6, 7]. The mealybug Planococcus citri (Hemiptera: Pseudococcidae) contains dual bacterial symbionts existing with an unprecedented organization: an unnamed gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the betaproteobacteria Candidatus Tremblaya princeps [8]. Here we describe the complete genomes and metabolic contributions of these unusual nested symbionts. We show that whereas there is little overlap in retained genes involved in nutrient production between symbionts, several essential amino acid pathways in the mealybug assemblage require a patchwork of interspersed gene products from Tremblaya, Moranella, and possibly P. citri. Furthermore, although Tremblaya has the smallest cellular genome yet described, it contains a genomic inversion present in both orientations in individual insects, starkly contrasting with the extreme structural stability typical of highly reduced bacterial genomes [4, 9, 10].

Original languageEnglish (US)
Pages (from-to)1366-1372
Number of pages7
JournalCurrent Biology
Issue number16
StatePublished - Aug 23 2011
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'An interdependent metabolic patchwork in the nested symbiosis of mealybugs'. Together they form a unique fingerprint.

Cite this