Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome

Chao Xue, Christopher Penton, Chen Zhu, Huan Chen, Yinghua Duan, Chang Peng, Shiwei Guo, Ning Ling, Qirong Shen

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Agricultural soils with (M+) or without (M−) organic amendment were collected from four long-term field experiments to investigate soil fungal community composition and its relationship to the soil ionome by employing both the sequencing of fungal internal transcription spacer (ITS) fragments and inductively coupled plasma mass spectrometry (ICP-MS). Fungal community composition was primarily impacted by physical location while organic amendment triggered community shifts in the same direction in all four sites. Overall, the fungal community was strongly correlated to soil pH that, conversely, impacted soil ion availability. Fungal community dissimilarity was strongly correlated to soil ionome (ionic profile) variability. Network analysis has been conducted to explore the biotic interactions in soil ecosystem, in which species (nodes) are connected by pairwise interactions (links). The results revealed that organic amendment led to a higher number of correlated nodes to soil ions, links, modules (a group of nodes more densely connected to each other than to nodes outside the group), and positive links within and between modules. Moreover, specific fungal modules were independently correlated with soil ions, suggesting that each module represents a functional guild or collection of similar fungal ecotypes. Module size (number of nodes in a module) exhibited no apparent influence on the scale of these correlations. The increase in cooperative/synergistic interactions with organic amendment suggests that application results in a better-organized and more efficient community with enhanced potential soil fungal interactions mediated by alterations in the soil ionome. Overall, this study indicates that these less commonly measured soil ions play an important role and may be used to reveal previously undetermined drivers of the soil microbial community.

Original languageEnglish (US)
Pages (from-to)95-106
Number of pages12
JournalBiology and Fertility of Soils
Volume54
Issue number1
DOIs
StatePublished - Jan 1 2018

Keywords

  • Chemical fertilizer
  • Co-occurrence network
  • Organic amendment
  • Soil fungal community
  • Soil ionome

ASJC Scopus subject areas

  • Microbiology
  • Agronomy and Crop Science
  • Soil Science

Fingerprint

Dive into the research topics of 'Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome'. Together they form a unique fingerprint.

Cite this