Acetyl-protected cytosine and guanine containing acrylics as supramolecular adhesives

Keren Zhang, Gregory B. Fahs, Evan Margaretta, Amanda G. Hudson, Robert B. Moore, Timothy E. Long

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Hydrogen bonding among nucleobase pairs serves as an efficient noncovalent interaction for designing supramolecular polymers with desired properties for pressure sensitive adhesives. Michael addition yielded acetyl-protected cytosine/guanine containing acrylic monomers with flexible spacers between the hydrogen bonding units and the acrylic backbone. Free radical polymerization of nucleobase-containing monomers afforded acetyl-protected cytosine/guanine homopolymers and random copolymers with n-butyl acrylate. Nucleobase incorporation significantly affected thermal, thermomechanical, rheological, morphological properties, and adhesive performance of polyacrylates. Guanine/cytosine-containing copolymers each exhibited a single glass transition (T g ) that increased with increasing nucleobase content. Self-association of acetyl cytosine and acetyl guanine units converted low T g polyacrylates to physically crosslinked networks with mechanical integrity. Solution casting acetyl guanine-containing copolymers with 8 mol% or higher guanine content yielded free-standing films with microphase-separated morphologies. Acetyl cytosine-containing copolymers with 15 mol% or more cytosine formed free-standing films with less microphase-separation compared to the guanine copolymers. 1 H NMR titration experiments established a 1:1 binding stoichiometry between acetyl cytosine and acetyl guanine monomers in CDCl 3, similar to guanine-cytosine association. However, the acetyl protecting group hindered the formation of triple hydrogen bonding, resulting in double hydrogen bonding between acetyl cytosine and acetyl guanine with an intermediate binding strength comparable to their self-associations. Acetyl guanine-containing copolymers with 3 mol% acetyl guanine exhibited higher peel strength on stainless steel and higher extended service frequency range compared to cytosine-containing copolymers and various pressure sensitive adhesive controls.

Original languageEnglish (US)
Pages (from-to)146-167
Number of pages22
JournalJournal of Adhesion
Issue number2
StatePublished - Jan 28 2019
Externally publishedYes


  • Pressure sensitive adhesive
  • hydrogen bonding
  • novel adhesives
  • nucleobase

ASJC Scopus subject areas

  • General Chemistry
  • Mechanics of Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Acetyl-protected cytosine and guanine containing acrylics as supramolecular adhesives'. Together they form a unique fingerprint.

Cite this